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Abstract

The classical analysis of stationary time series is based on the study of autocovariances and spectra. This type of analysis is especially
suitable for Gaussian time series. After it became known that also nonlinear deterministic systems can behave in a seemingly random
(chaotic) way, methods were developed to detect such nonlinear (and deterministic) sources. These methods are to a large extend base
on the use of correlation integrals. Though it is known that these two methods of analysis provide information which is in some sense
complementary, not much is known about the possible relations between the information they provide. In this paper we investigate the
correlation integrals, and the quantities which can be derived from them, of Gaussian time series in terms of their autocovariances and
spectra.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction A first class of such quantities consists of the autoco-
variances and the related power spectrum (definitions will
During the past years | have been cooperating with van be given below). These quantities give a complete charac-
den Bleek and his group in attempts to apply chaos theoryterization of a time series provided that the time series is
to the study of fluidized beds. In particular, the so-called generated by a linear (stochastic) Gaussian process. The
nonlinear time series analysis in terms of correlation inte- analysis in terms of these quantities is called linear time
grals turned out to be of importance. Apart from various series analysis, e.g. S§8.
practical questions, s¢#], this work also provoked theoret- Later it was observed that also time series which are ape-
ical questions. The present paper grew out of an attempt toriodic and even apparently unpredictable could be generated
understand the relation between the Shannon—-Kolmogorovby completely deterministic processes. The question whether
entropy and the power spectrum as givefidhand used in or not there is a deterministic structure behind such a time
the investigation of pressure signals of fluidized beds. We series cannot be decided on the basis of the autocovariances.
give here, for Gaussian time series, a complete descriptionFor this purpose new quantities where introduced,[ge
of the (smoothed) correlation integrals in terms of the power The most important ones are based on correlation integrals.
spectrum (or the autocovariances). It turns out that the re- These methods are the content of nonlinear or chaotic time
sults imply that the Shannon—Kolmogorov entropy and the series analysis, e.g. s&. For a survey of applications of
correlation entropy are quite different notions. these nonlinear methods to the analysis of multiphase reac-
Time series analysis provides methods to characterize thetors, se€1].
dynamical regime of a system on the basis of the fluctua- A refinement of this notion, the smoothed correlation in-
tions of a relevant quantity as a function of time. From the tegral, was introduced (without using this term) first in a
mathematical point of view the task is to extract from a time test for reversibility, se¢6], and later in order to improve
series quantities which may provide useful information and a general test, originally due to Kantz, for distinguishing
to study the relations between such guantities. different types of time series, s¢€]. It turns out that for
time series, which are generated by a linear Gaussian pro-
cess, these smoothed correlation integrals can be related in
* Tel.: +31-50-3633956; fax:-31-50-3633800. a rather direct way to autocovariances. These relations are
E-mail address: f.takens@math.rug.nl (F. Takens). the main subject of this paper.
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Nomendlature reconstruction v_ectors {(X(m), ..., X(m + k - )}m, or, _
more formally, if for each non-negative continuous function
By covariance matrix of the reconstruction g : R¥ > R we have
measureg.
Ck(e) k-dimensional correlation integral at ) n-l ) )
distances /I;k gdu, = nll_)moo - Zg(X(l), L XU+ kD). (1)
d(eo0) dimension per unit time at length i=0
s;aleeo_ In this caseu; is called thek-dimensionalreconstruction
D g!mens!on | h d measure. Averages, as on the right-hand side of the above
D(eo. k) e?ggjé?:gaéirig?\tsioslaca% an equation, will also be denoted b§;(g(X(@),..., X +
; ! k — 1))). Since measured time series never have infinite
! function, dzeflned by length, we should interpret them as (randomly situated)
fls) =e5/2 intervals {X (n)},=,5 from such time series. Just as one
F read out map may ‘conclude’, on a statistical basis, that the members of
Ge(1) function defined by a population A are in average bigger than members of a
G:(\) = (1/2) In(?/(2) + £2)) population B on the basis of (sufficiently large) samples
h function, defined by:(s) = 1 for from these populations, one may also ‘conclude’, on a sta-
s <landh(s) =0fors>1 tistical basis, that two (sufficiently long) segments of time
H entropy series belong to stationary time series whose reconstruction
H(eo) entropy at length scaley measures are significantly different.
H(eo, k) entropy at length scaley and Unless explicitly stated otherwise we assume that our
embedding dimensioh time series will be stationary and in average zero, i.e. that
Sd(ep) smoothed dimension per unit & (X (i) = 0.
time at length scaleg Autocovariances and power spectrum. For a time series
SC (e) smoothedk-dimensional correlation {X (n)} the kth autocovariance py is &, (X (n) X (n + k)) (for
integral at distance k = 0 this is also called the variance). Note that= p_.
SH(eo) smoothed entropy at length scatg In terms of these autocovariances {i@ver spectrum can
X(n) nth element of the time serie$ be given as
X,(fm”) nth (2n 4+ 1)-dimensional reconstruction o
vector of the time serieX D(0) = Z o o ko 2)
Greek letters k=
Af ith eigenvalue o _ Note that®(w) = ®(—w) and ®(w) = P(w + 271). (We
Mk k-dimensional reconstruction measure ignore here the problems related with the possibility that
Pk kth autocovariance the sum may not converge and that therefdremust be
@ power spectrum interpreted as a generalized function.)
¢:M — M time evolution map of a dynamical Correlation integrals. For a stationary time series with
system with state spade reconstruction measurgs; the k-dimensionalcorrelation
w (angular) frequency integral at distance ¢, CX(¢), is defined as theu, x )

measure of the sef(x,y) € R¥ x R¥|dist(x,y) < e}.
Here the distance dist, y) is the maximum distance
max—1,.k|lxi — yi|. If we defineh(s) as the real function

We now give the definitions of the various notions which which i5 1 fors < 1 and 0 fors > 1. then

occurred above.

Time series and stationarity. From the mathematical point . dist(x, y)
of view we need time series which are defined ‘for all time’. € (¢) = f h <—> dpak (x) e (). 3)

. . . A . Rk xRk 2
The time itself we assume to be discrete: this is just for sim-
plicity and this simplicity is harmless because when record- We obtain the smoothed correlation integrals by replacing
ing a time series one has to use a discretized time anywaythe discontinuous functioh(s) by the smooth function:
So a time series is a functiaXi which assigns to each time
n € N a valueX(n) which we assume to be a real number f(s) = /2, 4)
(N denotes the set of natural numberd @, ...). An im-
portant property which a time series may or may not have Note that here also we get numbers between 0 and 1,
is stationarity. We say that a time series is stationary (in the for smaller values ot the integral is ‘concentrated’ on a
strict sense) if, for each, there is a probability measure smaller neighborhood of the diagonal R x R¥. These
wrx on RF which describes the density of titedimensional smoothed correlation integrals are denoted b§(8C
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2. Smoothed correlation integrals of time series are the same, and finite, for time seriéandX as above. For
generated by deterministic systems this reason we call these quantitiefrinsic (independent of
the read out function as long as one stays within the class of

We first give a short summary of the properties of corre- observable systems). These quantities have a clear geometric
lation integrals and then relate them to the smoothed corre-and dynamical meaning® is the dimension of the closure
lation integrals. of the orbit O(xp) and H is a measure for the sensitive

Unless explicitly stated otherwise, we consider in this dependence on initial state. They are calleddbreelation
section only time series which are generated by smooth dimension and thecorrelation entropy, respectively, e.g. see
deterministic dynamical systems. With this we mean the [5]. These quantities, and the correlation integrals on which
following: they are based, became the main tool of what is now called
nonlinear time series analysis. For stochastic time series,
e.g. for time series generated by autoregressive models these
quantities are infinite. However, even for such time series

e there is a finite dimensional state spate which we
may assume to be a vector space—the dimensiad &f

denoted bymn; ; e
e there is an invertible map : M — M which determines there are approximate quantities like
the time evolution in the system, i.e. if we have the state d In(Ck(g))
x € M attimen, then we have the stagex) at timen + 1 D(eo, k) = T OR (8)
(for the case thap is not invertible, se¢8]); £=¢0
e there is a read out functiof : M — R which assigns to and
each stata € M the valueF(x) which is recorded when
the system is in the state H(eo, k) = In(C*(£0)) — IN(C*(eq)) (9)

So with an initial stateo ;here corresponds an orld(xo) = which are finite and which can be interpreted as the dimen-
(x0, ¥1 = ¢(x0), ¥2 = ¢*(x0), ...) and to this orbit corre- i respectively the entropy, at length scaj@nd embed-

sponds a time series (i) = F(x;). ding dimensionk. One can even make this independent of
For technical reasons we have to assume that that bothy,o embedding dimensidnby defining

¢ and F are at least once continuously differentiable and

j[hat for each initial poinlxo, the corresponding orb®(xo) d(go) = lim }D(so, k). (10)
is bounded. According to the reconstruction theorem, see k—o0 k

[4], almost all pairgg, F) defineobservable systems in the
sense that each statee M of the dynamical system is
uniquely determined by the sequence of 2 1 successive . In(Ck(eo))

measurements which one obtains if the systems stants in  7/(€0) = lemoo r (11)
i.e. by (F(x), F(p(x)), ..., F(¢®"(x))). Also, if F'is another

read out function, such thép, F) also defines an observable the entropy at length scate. These quantities are still finite
system and if¥ andX are the time series corresponding to for stochastic time series.

the same initial statey for the read out functiong and F, The behavior of these quantities, as functioagfandk),

respectively, then there is a strong relation between recursionn0t only show the difference between time series generated
in the two time series in the sense that for some constantby deterministic and stochastic systems but can be used also

the dimension per unit time at length scatg and

K > 1 and for anyi, j > 0 one has to distinguish between different dynamical regimes.
In this context it is important to observe that these quan-
K7H X — x @b < 2D - x2m) tities give information which cannot be extracted from the
ol ol autocovariances. For this we discuss two examples:
< K| X2 - x @, (5)
5 . . Example 1 (The logistic system). We consider a dynami-
wherex @"+Y andX @'+ denote the2m-+1)-dimensional ple 1 ( g ystem) y

cal system with state space ], +1] and whose evolution is
determined by the map(x) = 1 — 2x? (as a read out func-
tion we just take the identity). There is an extensive theory
about this system and related systems, for an introductory
treatment, sef]. For almost any initial state, the resulting
orbit (or time series) has variangg = 1/2 while all the

reconstruction vector ok, respectively,X starting with its

nth element. This gives an indication why one is interested
in norms of differences of reconstruction vectors and in the
correlation integrals which describe the statistics of these
distances. In fact, one can prove that the following quantities

. _In(Ck(e)) other autocovariances;, p», ... are zero. This means that
D= lm lim ———— (6) ; :
k—o00 e>0  In(e) from the autocovariances one cannot deduce that these time
series are generated by a deterministic system: it just as well
and could have been obtained by choosing each element of the
. . In(C*(e)) time series randomly and independently from a (Gaussian)
H=Ilm |lm — —=—= (7) ST ) .
60 k00 k distribution with mean zero and variance 1/2.
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Example 2 (Autoregressive systems). An autoregressive The value ofd($) is defined by the equation:
system generates time series according to the following

. e @2 g g, (14)
formula:

This implies indeed that for a#l > 0 we havef? < f. Note
X)) =arX(n — 1) +aX(n—2) + - that, for small values of, we haved(s) ~ +/25.
+arX(n —k) + &, (12) Using thatf* < f we find the following inequality be-

. tween correlation integrals and smoothed correlation inte-
where thes, are chosen independently and randomly from grals:

a distribution with mean 0 and positive variance (if this dis- -

tribution is Gaussian, the corresponding time series is Gaus-SC'(e) > (1 — 8)*C*(d()e). (15)
sian, see the next section). The coe_fﬁmer,nt_;ave to satlsl_‘y From the fact that this inequality holds fdarbitrarily close
a condition so that the generated time series do not diverge

A . . to O, it follows that the limits defining the correlation di-
to infinity. Time series generated by such systems are the . . .
C . mension and entropy cannot increase if we replace the cor-
standard examples of stochastic time series. Whenever the

. . relation integrals by smoothed correlation integrals.
autocovariancegy, o1, .. ., ¢ are given, one can produce

the coefficientsiy, . . ., a; such that the autocovariances of . .
. . : Remark. Itis even possible to show that the smoothed cor-
the time series generated by the corresponding autoregres-

sive system, provided the variance of theis right, are relation dimension equal_s the usual correlgtlon dimension;
exactly po. . . .. pr. for the smoothed correlation entropy we conjecture the same.

Now we can change such an autoregressive system into a
rministi m with hanging th varian Lo . :
dete . stic ;ystg thout cha g g the autocovaria CeSS. Smoothed correlation integrals of Gaussian time

of the time series it produces. For this one replaces; sy series
the successive values produced by the above logistic system
(if necessary multiplied by a constant in order to obtain the

.y k . . . .
right variance). A probability measureu on R* is Gaussian if it has a

density of the form

_ Replacing correlation integrals by smoothed correlation  p =] B|~Y2(2r)k/2 e—<x.B*1x>/2’ (16)
integrals. We now show that, when replacing the correlation
integrals in the definitions of correlation dimension and cor- WhereB, the covariance matrix of the distribution, is a sym-
relation entropy by smoothed correlation integrals, and thus metric and strictly positivée x k matrix with determinant
defining the smoothed correlation dimension and entropy, |B|. We say that a time series is Gaussian if all its recon-
denoted by SD and SH, respectively, we obtain quantities Struction measures are Gaussian. If a Gaussian time series
which are still intrinsic and which are finite for time series has autocovariances then the covariance matrig of its
generated by deterministic dynamical systems. The fact thatk-dimensional reconstruction measure is the Toeplitz matrix:
these smoothed quantities are still intrinsic follows easily
from the definition and the inequaliti€s).

We will now show that the smoothed correlation dimen- pPL PO PL
sion and entropy are in fact majorated by the correlation Bx = P2 p1 po - : . (17)
dimension and entropy.

In the definition of the correlation integréf (¢) we have
under the integral an expression which can be written as

£0 P11 P2 - Pk-1

Pk—-1 - 0 po

‘ These and the following formulae can be easily derived from
1—[ A lxi — yil (13) the following two well-known formulae (for symmetric and
1 P ’ strictly positive B):

_ -1
whereh(s) is the function which is 1 fos < 1 and which /k e BTN2 gy = | BIY2(2m)/2 (18)
is 0 fors > 1 and wherexy, ..., x; and ys, ...,y are R
the components of two elements (reconstruction vectors)and
in R,
o B2 9 k2 g B2 g _
In the definition of the smoothed correlation integral the /Rk xixj| B2 (2m) M2 e BT 2 dy = by, (19)

function is replaced by the functiofi(s) = e=*/2. In order
to compare the two definitions we minorate this function by
functions f°:

wherebjj is the (i, j)th element of the matriB.

In this section we want to find expressions for the
smoothed correlation integrals of Gaussian time series in
o fo(s)=1-28if 5 <d(), terms of the autocovariances. For this we have to consider
o f(s) =0if s> d(s). the product measurg; x ux on RF x R¥. Denoting the
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covariance matrix ofu; by By this product measure has For later reference we put this result in a slightly different

density form using the functions
-1 . 2
p(x,y) = |Br|~t2m) K e B+ B /2 20 Goy= (- o8
8( ) 2 2)\.+82 ( )

We transform this density to the v coordinates which are ]
defined byu = (x + y)/2 andv = x — y (note that the ~ We find
determinant of this transformation is1). Using IN(SC () = > G.(5). (29)

(x, By )+ (v, B y) = (u, (3B M) + (v, 2B ) , , )
Finally, we observe that though the elgenvalmés. co A

(21) are determined by the autocovarianggs. .., px—1, there
we find for the density ofix x ux, with respect to the, v is no simple expression for these eigenvalues in terms of
coordinates: the autocovariances. Still, far— oo, there are asymptotic

1 12 2 B /2Ly /2 results. These will be used in the next section.
P, v) = (|3 Be|7H2(@2m) 72 e B2z,
~1/2 9.y —k/2 o=((v.(2Br) " 1v))/2
x (12Bx] (2m) € )- (22) 4. Dimensions, entropies, and power spectrum
Since, for the calculation of the smoothed correlation inte-
grals, we are only interested in the distribution of the dif-  As in the previous section we assume that we have a

ferences of reconstruction vectors, we can summarize theGaussian time series with autocovarianggsps1, .... As

result of the above calculation by saying: we mentioned irSection 1 the power spectrum is then given
If the k-dimensional reconstruction vectors have a Gaus- by

sian distribution w; with covariance matrix By, then the )

differences of these reconstruction vectors also have a D)= Y pe . (30)

Gaussian distribution but with covariance matrix 2By,. k=—o00

The k-dimensional smoothed correlation integral at dis-
tance ¢ of a Gaussian time series whogedimensional
reconstruction measurg; has autocovariance matrigy
equals the integral:

SC(e) :/ |23k|*1/2(2n-)*k/2e*((v»(ZBk)flv))/Z
Rk

There are (asymptotic) relations between the eigenvalues of
the (Toeplitz) covariance matrice®; of the reconstruction
measures of the time series, denotedipy. . ., A%, and the
power spectrum, sgd0, Chapter 4]For our purpose these
relations can be stated as:

For any continuos functio : [0, co) — R, we have

—lvl?/2¢? 1k n
€ dv. @3 im £ GGH =/ G(®(w)) do. (31)
Introducing the matrix koo ki i
Bie = 2(e2(2By) "L+ 1d) 7L, (24) For this result to be valid one has to assume that the power

spectrum is a bounded Lebesgues integrable function. This
is certainly the case if the time series is generated by a
stochastic autoregressive model, but not if the time series is

where Id is thek x k identity matrix, we see that the above
expression reduces to

_1/2 /2 o (0(Bre) T2 (quasi) periodic.
SCi(e) = /Rk |2B| M2 (2m) 2 e (W Bre) T2 gy On the basis of this result we have, for> oo,
_ 1 T
= |By.e|?|2B,| M2, (28 ZInscie) ~/ Go(®()) do, (32)
This last expression can be further evaluated in terms of the hereG. i dffj_T din th . tion. Thi
(positive) eigenvalues d#;, which we denote by, ..., A%, whereG, IS as defined in the previous section. This means

From the definition 0By . and the fact that all the matrices that we find for the smoothed entropy ‘at length scafe

By, Id, and henceBy . have a common orthogonal basis with
respect to which they are all on diagonal form, it follows
that theith eigenvalue ifBy . equals

T 2
2,k - —/ Lin(—0 ) g (33)
A ) (26) 2 29(w) + 8%
A+ (1/2)e2

SH(sg) = —lemOO% IN(SC*(g0))

There is also a corresponding result for the dimension per

This implies that unit time at length scaleg. For calculating the smoothed
r ) 1/2 version of D(gg, k) we need the function
&
SC (e) = |Bre Y2128, 7Y% = (H —) . (@7 dGe 21
N k = . 34
i1 2 e dine)  2n+¢2 (34)
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This means that the smoothed dimension per unit time, atRemark. The smoothed entropy Sk) should not be

distancesg, equals confused with another notion of-entropy, also called
T 2¢(w) rate distortion function, introduced by Shannon and Kol-
sd(gg) = f — (35) mogorov. The way in which this rate distortion function is
—n 20(w) + &5 related to the power spectrum is completely different, see

A final question is the following. For Gaussian time series, [2]-

the autocovariances (or the power spectrum) contain all the

relevant information. What about the (smoothed) correlation References
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