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Linear versus nonlinear time series
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Abstract

The classical analysis of stationary time series is based on the study of autocovariances and spectra. This type of analysis is especially
suitable for Gaussian time series. After it became known that also nonlinear deterministic systems can behave in a seemingly random
(chaotic) way, methods were developed to detect such nonlinear (and deterministic) sources. These methods are to a large extend based
on the use of correlation integrals. Though it is known that these two methods of analysis provide information which is in some sense
complementary, not much is known about the possible relations between the information they provide. In this paper we investigate the
correlation integrals, and the quantities which can be derived from them, of Gaussian time series in terms of their autocovariances and
spectra.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

During the past years I have been cooperating with van
den Bleek and his group in attempts to apply chaos theory
to the study of fluidized beds. In particular, the so-called
nonlinear time series analysis in terms of correlation inte-
grals turned out to be of importance. Apart from various
practical questions, see[1], this work also provoked theoret-
ical questions. The present paper grew out of an attempt to
understand the relation between the Shannon–Kolmogorov
entropy and the power spectrum as given in[2] and used in
the investigation of pressure signals of fluidized beds. We
give here, for Gaussian time series, a complete description
of the (smoothed) correlation integrals in terms of the power
spectrum (or the autocovariances). It turns out that the re-
sults imply that the Shannon–Kolmogorov entropy and the
correlation entropy are quite different notions.

Time series analysis provides methods to characterize the
dynamical regime of a system on the basis of the fluctua-
tions of a relevant quantity as a function of time. From the
mathematical point of view the task is to extract from a time
series quantities which may provide useful information and
to study the relations between such quantities.
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A first class of such quantities consists of the autoco-
variances and the related power spectrum (definitions will
be given below). These quantities give a complete charac-
terization of a time series provided that the time series is
generated by a linear (stochastic) Gaussian process. The
analysis in terms of these quantities is called linear time
series analysis, e.g. see[3].

Later it was observed that also time series which are ape-
riodic and even apparently unpredictable could be generated
by completely deterministic processes. The question whether
or not there is a deterministic structure behind such a time
series cannot be decided on the basis of the autocovariances.
For this purpose new quantities where introduced, see[4].
The most important ones are based on correlation integrals.
These methods are the content of nonlinear or chaotic time
series analysis, e.g. see[5]. For a survey of applications of
these nonlinear methods to the analysis of multiphase reac-
tors, see[1].

A refinement of this notion, the smoothed correlation in-
tegral, was introduced (without using this term) first in a
test for reversibility, see[6], and later in order to improve
a general test, originally due to Kantz, for distinguishing
different types of time series, see[7]. It turns out that for
time series, which are generated by a linear Gaussian pro-
cess, these smoothed correlation integrals can be related in
a rather direct way to autocovariances. These relations are
the main subject of this paper.
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Nomenclature

Bk covariance matrix of the reconstruction
measureµk

Ck(ε) k-dimensional correlation integral at
distanceε

d(ε0) dimension per unit time at length
scaleε0

D dimension
D(ε0, k) dimension at length scaleε0 and

embedding dimensionk
f function, defined by

f(s) = e−s2/2

F read out map
Gε(λ) function defined by

Gε(λ) = (1/2) ln(ε2/(2λ + ε2))

h function, defined byh(s) = 1 for
s ≤ 1 andh(s) = 0 for s > 1

H entropy
H(ε0) entropy at length scaleε0
H(ε0, k) entropy at length scaleε0 and

embedding dimensionk
sd(ε0) smoothed dimension per unit

time at length scaleε0

SCk(ε) smoothedk-dimensional correlation
integral at distanceε

SH(ε0) smoothed entropy at length scaleε0
X(n) nth element of the time seriesX
X

(2m+1)
n nth (2m + 1)-dimensional reconstruction

vector of the time seriesX

Greek letters
λki ith eigenvalue ofBk

µk k-dimensional reconstruction measure
ρk kth autocovariance
Φ power spectrum
ϕ : M → M time evolution map of a dynamical

system with state spaceM
ω (angular) frequency

We now give the definitions of the various notions which
occurred above.

Time series and stationarity. From the mathematical point
of view we need time series which are defined ‘for all time’.
The time itself we assume to be discrete: this is just for sim-
plicity and this simplicity is harmless because when record-
ing a time series one has to use a discretized time anyway.
So a time series is a functionX which assigns to each time
n ∈ N a valueX(n) which we assume to be a real number
(N denotes the set of natural numbers 0,1,2, . . . ). An im-
portant property which a time series may or may not have
is stationarity. We say that a time series is stationary (in the
strict sense) if, for eachk, there is a probability measure
µk on Rk which describes the density of thek-dimensional

reconstruction vectors {(X(m), . . . , X(m + k − 1))}m, or,
more formally, if for each non-negative continuous function
g : Rk → R we have

∫
Rk

g dµk = lim
n→∞

1

n

n−1∑
i=0

g(X(i), . . . , X(i + k − 1)). (1)

In this caseµk is called thek-dimensionalreconstruction
measure. Averages, as on the right-hand side of the above
equation, will also be denoted byEi(g(X(i), . . . , X(i +
k − 1))). Since measured time series never have infinite
length, we should interpret them as (randomly situated)
intervals {X(n)}n=n1

n=n0 from such time series. Just as one
may ‘conclude’, on a statistical basis, that the members of
a population A are in average bigger than members of a
population B on the basis of (sufficiently large) samples
from these populations, one may also ‘conclude’, on a sta-
tistical basis, that two (sufficiently long) segments of time
series belong to stationary time series whose reconstruction
measures are significantly different.

Unless explicitly stated otherwise we assume that our
time series will be stationary and in average zero, i.e. that
Ei(X(i)) = 0.

Autocovariances and power spectrum. For a time series
{X(n)} thekth autocovariance ρk is En(X(n)X(n+ k)) (for
k = 0 this is also called the variance). Note thatρk = ρ−k.
In terms of these autocovariances thepower spectrum can
be given as

Φ(ω) =
∞∑

k=−∞
ρk e−ikω. (2)

Note thatΦ(ω) = Φ(−ω) andΦ(ω) = Φ(ω + 2π). (We
ignore here the problems related with the possibility that
the sum may not converge and that thereforeΦ must be
interpreted as a generalized function.)

Correlation integrals. For a stationary time series with
reconstruction measuresµk the k-dimensionalcorrelation
integral at distance ε, Ck(ε), is defined as the(µk × µk)

measure of the set{(x, y) ∈ Rk × Rk|dist(x, y) ≤ ε}.
Here the distance dist(x, y) is the maximum distance
maxi=1,...,k|xi − yi|. If we defineh(s) as the real function
which is 1 fors ≤ 1 and 0 fors > 1, then

Ck(ε) =
∫

Rk×Rk

h

(
dist(x, y)

ε

)
dµk(x)dµk(y). (3)

We obtain the smoothed correlation integrals by replacing
the discontinuous functionh(s) by the smooth function:

f(s) = e−s2/2. (4)

Note that here also we get numbers between 0 and 1;
for smaller values ofε the integral is ‘concentrated’ on a
smaller neighborhood of the diagonal inRk × Rk. These
smoothed correlation integrals are denoted by SCk(ε).
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2. Smoothed correlation integrals of time series
generated by deterministic systems

We first give a short summary of the properties of corre-
lation integrals and then relate them to the smoothed corre-
lation integrals.

Unless explicitly stated otherwise, we consider in this
section only time series which are generated by smooth
deterministic dynamical systems. With this we mean the
following:

• there is a finite dimensional state spaceM, which we
may assume to be a vector space—the dimension ofM is
denoted bym;

• there is an invertible mapϕ : M → M which determines
the time evolution in the system, i.e. if we have the state
x ∈ M at timen, then we have the stateϕ(x) at timen+1
(for the case thatϕ is not invertible, see[8]);

• there is a read out functionF : M → R which assigns to
each statex ∈ M the valueF(x) which is recorded when
the system is in the statex.

So with an initial statex0 there corresponds an orbitO(x0) =
(x0, x1 = ϕ(x0), x2 = ϕ2(x0), . . . ) and to this orbit corre-
sponds a time seriesX(i) = F(xi).

For technical reasons we have to assume that that both
ϕ andF are at least once continuously differentiable and
that for each initial pointx0, the corresponding orbitO(x0)

is bounded. According to the reconstruction theorem, see
[4], almost all pairs(ϕ, F) defineobservable systems in the
sense that each statex ∈ M of the dynamical system is
uniquely determined by the sequence of 2m + 1 successive
measurements which one obtains if the systems starts inx,
i.e. by(F(x), F(ϕ(x)), . . . , F(ϕ2m(x))). Also, if F̃ is another
read out function, such that(ϕ, F̃ ) also defines an observable
system and ifX andX̃ are the time series corresponding to
the same initial statex0 for the read out functionsF andF̃ ,
respectively, then there is a strong relation between recursion
in the two time series in the sense that for some constant
K > 1 and for anyi, j > 0 one has

K−1‖X(2m+1)
i − X

(2m+1)
j ‖ < ‖X̃(2m+1)

i − X̃
(2m+1)
j ‖

< K‖X(2m+1)
i − X

(2m+1)
j ‖, (5)

whereX(2m+1)
n andX̃(2m+1)

n denote the(2m+1)-dimensional
reconstruction vector ofX, respectively,X̃ starting with its
nth element. This gives an indication why one is interested
in norms of differences of reconstruction vectors and in the
correlation integrals which describe the statistics of these
distances. In fact, one can prove that the following quantities

D = lim
k→∞

lim
ε→0

ln(Ck(ε))

ln(ε)
(6)

and

H = lim
ε→0

lim
k→∞

− ln(Ck(ε))

k
(7)

are the same, and finite, for time seriesX andX̃ as above. For
this reason we call these quantitiesintrinsic (independent of
the read out function as long as one stays within the class of
observable systems). These quantities have a clear geometric
and dynamical meaning:D is the dimension of the closure
of the orbitO(x0) and H is a measure for the sensitive
dependence on initial state. They are called thecorrelation
dimension and thecorrelation entropy, respectively, e.g. see
[5]. These quantities, and the correlation integrals on which
they are based, became the main tool of what is now called
nonlinear time series analysis. For stochastic time series,
e.g. for time series generated by autoregressive models these
quantities are infinite. However, even for such time series
there are approximate quantities like

D(ε0, k) = d ln(Ck(ε))

d ln(ε)

∣∣∣∣∣
ε=ε0

(8)

and

H(ε0, k) = ln(Ck(ε0)) − ln(Ck+1(ε0)) (9)

which are finite and which can be interpreted as the dimen-
sion, respectively the entropy, at length scaleε0 and embed-
ding dimensionk. One can even make this independent of
the embedding dimensionk by defining

d(ε0) = lim
k→∞

1

k
D(ε0, k), (10)

the dimension per unit time at length scaleε0, and

H(ε0) = lim
k→∞

ln(Ck(ε0))

k
, (11)

the entropy at length scaleε0. These quantities are still finite
for stochastic time series.

The behavior of these quantities, as function ofε0 (andk),
not only show the difference between time series generated
by deterministic and stochastic systems but can be used also
to distinguish between different dynamical regimes.

In this context it is important to observe that these quan-
tities give information which cannot be extracted from the
autocovariances. For this we discuss two examples:

Example 1 (The logistic system). We consider a dynami-
cal system with state space [−1,+1] and whose evolution is
determined by the mapϕ(x) = 1− 2x2 (as a read out func-
tion we just take the identity). There is an extensive theory
about this system and related systems, for an introductory
treatment, see[9]. For almost any initial state, the resulting
orbit (or time series) has varianceρ0 = 1/2 while all the
other autocovariancesρ1, ρ2, . . . are zero. This means that
from the autocovariances one cannot deduce that these time
series are generated by a deterministic system: it just as well
could have been obtained by choosing each element of the
time series randomly and independently from a (Gaussian)
distribution with mean zero and variance 1/2.
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Example 2 (Autoregressive systems). An autoregressive
system generates time series according to the following
formula:

X(n) = a1X(n − 1) + a2X(n − 2) + · · ·
+ akX(n − k) + εn, (12)

where theεn are chosen independently and randomly from
a distribution with mean 0 and positive variance (if this dis-
tribution is Gaussian, the corresponding time series is Gaus-
sian, see the next section). The coefficientsai have to satisfy
a condition so that the generated time series do not diverge
to infinity. Time series generated by such systems are the
standard examples of stochastic time series. Whenever the
autocovariancesρ0, ρ1, . . . , ρk are given, one can produce
the coefficientsa1, . . . , ak such that the autocovariances of
the time series generated by the corresponding autoregres-
sive system, provided the variance of theεn is right, are
exactlyρ0, . . . , ρk.

Now we can change such an autoregressive system into a
deterministic system without changing the autocovariances
of the time series it produces. For this one replaces theεn by
the successive values produced by the above logistic system
(if necessary multiplied by a constant in order to obtain the
right variance).

Replacing correlation integrals by smoothed correlation
integrals. We now show that, when replacing the correlation
integrals in the definitions of correlation dimension and cor-
relation entropy by smoothed correlation integrals, and thus
defining the smoothed correlation dimension and entropy,
denoted by SD and SH, respectively, we obtain quantities
which are still intrinsic and which are finite for time series
generated by deterministic dynamical systems. The fact that
these smoothed quantities are still intrinsic follows easily
from the definition and the inequalities(5).

We will now show that the smoothed correlation dimen-
sion and entropy are in fact majorated by the correlation
dimension and entropy.

In the definition of the correlation integralCk(ε) we have
under the integral an expression which can be written as

k∏
i=1

h

( |xi − yi|
ε

)
, (13)

whereh(s) is the function which is 1 fors ≤ 1 and which
is 0 for s > 1 and wherex1, . . . , xk and y1, . . . , yk are
the components of two elements (reconstruction vectors)
in Rk.

In the definition of the smoothed correlation integral the
functionh is replaced by the functionf(s) = e−s2/2. In order
to compare the two definitions we minorate this function by
functionsf δ:

• f δ(s) = 1 − δ if s ≤ d(δ),
• f δ(s) = 0 if s > d(δ).

The value ofd(δ) is defined by the equation:

e−(d(δ))2/2 = 1 − δ. (14)

This implies indeed that for allδ > 0 we havef δ ≤ f . Note
that, for small values ofδ, we haved(δ) ∼ √

2δ.
Using thatf δ ≤ f we find the following inequality be-

tween correlation integrals and smoothed correlation inte-
grals:

SCk(ε) ≥ (1 − δ)kCk(d(δ)ε). (15)

From the fact that this inequality holds forδ arbitrarily close
to 0, it follows that the limits defining the correlation di-
mension and entropy cannot increase if we replace the cor-
relation integrals by smoothed correlation integrals.

Remark. It is even possible to show that the smoothed cor-
relation dimension equals the usual correlation dimension;
for the smoothed correlation entropy we conjecture the same.

3. Smoothed correlation integrals of Gaussian time
series

A probability measureµ on Rk is Gaussian if it has a
density of the form

p(x) = |B|−1/2(2π)−k/2 e−〈x,B−1x〉/2, (16)

whereB, the covariance matrix of the distribution, is a sym-
metric and strictly positivek × k matrix with determinant
|B|. We say that a time series is Gaussian if all its recon-
struction measures are Gaussian. If a Gaussian time series
has autocovariancesρk then the covariance matrixBk of its
k-dimensional reconstruction measure is the Toeplitz matrix:

Bk =




ρ0 ρ1 ρ2 · ρk−1

ρ1 ρ0 ρ1 · ·
ρ2 ρ1 ρ0 · ·
· · · · ·

ρk−1 · · · ρ0



. (17)

These and the following formulae can be easily derived from
the following two well-known formulae (for symmetric and
strictly positiveB):∫

Rk

e−〈x,B−1x〉/2 dx = |B|1/2(2π)k/2 (18)

and∫
Rk

xixj|B|−1/2(2π)−k/2 e−〈x,B−1x〉/2 dx = bij, (19)

wherebij is the(i, j)th element of the matrixB.
In this section we want to find expressions for the

smoothed correlation integrals of Gaussian time series in
terms of the autocovariances. For this we have to consider
the product measureµk × µk on Rk × Rk. Denoting the
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covariance matrix ofµk by Bk this product measure has
density

p(x, y) = |Bk|−1(2π)−k e−(〈x,B−1
k

x〉+〈y,B−1
k

y〉)/2. (20)

We transform this density to theu, v coordinates which are
defined byu = (x + y)/2 andv = x − y (note that the
determinant of this transformation is−1). Using

〈x, B−1
k x〉 + 〈y, B−1

k y〉 = 〈u, (1
2Bk)

−1u〉 + 〈v, (2Bk)
−1v〉

(21)

we find for the density ofµk × µk, with respect to theu, v
coordinates:

p(u, v) = (|1
2Bk|−1/2(2π)−k/2 e−(〈u,(Bk/2)−1u〉)/2)

× (|2Bk|−1/2(2π)−k/2 e−(〈v,(2Bk)
−1v〉)/2). (22)

Since, for the calculation of the smoothed correlation inte-
grals, we are only interested in the distribution of the dif-
ferences of reconstruction vectors, we can summarize the
result of the above calculation by saying:

If the k-dimensional reconstruction vectors have a Gaus-
sian distribution µk with covariance matrix Bk, then the
differences of these reconstruction vectors also have a
Gaussian distribution but with covariance matrix 2Bk.

The k-dimensional smoothed correlation integral at dis-
tance ε of a Gaussian time series whosek-dimensional
reconstruction measureµk has autocovariance matrixBk

equals the integral:

SCk(ε) =
∫

Rk

|2Bk|−1/2(2π)−k/2 e−(〈v,(2Bk)
−1v〉)/2

× e−‖v‖2/2ε2
dv. (23)

Introducing the matrix

Bk,ε = ε2(ε2(2Bk)
−1 + Id)−1, (24)

where Id is thek × k identity matrix, we see that the above
expression reduces to

SCk(ε) =
∫

Rk

|2Bk|−1/2(2π)−k/2 e−(〈v,(Bk,ε)
−1v〉)/2 dv

= |Bk,ε|1/2|2Bk|−1/2. (25)

This last expression can be further evaluated in terms of the
(positive) eigenvalues ofBk, which we denote byλk1, . . . , λ

k
k.

From the definition ofBk,ε and the fact that all the matrices
Bk, Id, and henceBk,ε have a common orthogonal basis with
respect to which they are all on diagonal form, it follows
that theith eigenvalue ifBk,ε equals

ε2λki

λki + (1/2)ε2
. (26)

This implies that

SCk(ε) = |Bk,ε|1/2|2Bk|−1/2 =
(

k∏
i=1

ε2

2λki + ε2

)1/2

. (27)

For later reference we put this result in a slightly different
form using the functions

Gε(λ) = 1

2
ln

(
ε2

2λ + ε2

)
(28)

we find

ln(SCk(ε)) =
∑
i

Gε(λ
k
i ). (29)

Finally, we observe that though the eigenvaluesλk1, . . . , λ
k
k

are determined by the autocovariancesρ0, . . . , ρk−1, there
is no simple expression for these eigenvalues in terms of
the autocovariances. Still, fork → ∞, there are asymptotic
results. These will be used in the next section.

4. Dimensions, entropies, and power spectrum

As in the previous section we assume that we have a
Gaussian time series with autocovariancesρ0, ρ1, . . . . As
we mentioned inSection 1, the power spectrum is then given
by

Φ(ω) =
∞∑

k=−∞
ρk e−ikω. (30)

There are (asymptotic) relations between the eigenvalues of
the (Toeplitz) covariance matricesBk of the reconstruction
measures of the time series, denoted byλki , . . . , λ

k
k, and the

power spectrum, see[10, Chapter 4]. For our purpose these
relations can be stated as:

For any continuos functionG : [0,∞) → R, we have

lim
k→∞

1

k

k∑
i=1

G(λki ) =
∫ π

−π

G(Φ(ω))dω. (31)

For this result to be valid one has to assume that the power
spectrum is a bounded Lebesgues integrable function. This
is certainly the case if the time series is generated by a
stochastic autoregressive model, but not if the time series is
(quasi) periodic.

On the basis of this result we have, fork → ∞,
1

k
ln(SCk(ε)) ∼

∫ π

−π

Gε(Φ(ω))dω, (32)

whereGε is as defined in the previous section. This means
that we find for the smoothed entropy ‘at length scaleε0’

SH(ε0) = − lim
k→∞

1

k
ln(SCk(ε0))

= −
∫ π

−π

1

2
ln

(
ε2

0

2Φ(ω) + ε2
0

)
dω. (33)

There is also a corresponding result for the dimension per
unit time at length scaleε0. For calculating the smoothed
version ofD(ε0, k) we need the function

dGε

d ln(ε)
= 2λ

2λ + ε2
. (34)
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This means that the smoothed dimension per unit time, at
distanceε0, equals

sd(ε0) =
∫ π

−π

2Φ(ω)

2Φ(ω) + ε2
0

dω. (35)

A final question is the following. For Gaussian time series,
the autocovariances (or the power spectrum) contain all the
relevant information. What about the (smoothed) correlation
integrals. It turns out that the (smoothed) correlation inte-
grals are missing important information. A simple example
to see this is the following. Take any stationary Gaussian
time seriesX = X(0),X(1), . . . . Now we obtain a second
time seriesX̃ = X̃(0), X̃(1), . . . by changing the sign of all
the valuesX(i) with i even, i.e.X(i) = X̃(i) for i odd and
X(i) = −X̃(i) for i even. Then alsõX is stationary. And,
as one can see easily, the (smoothed) correlation integrals
for X and X̃ are the same. Still for the autocovariancesρi
and ρ̃i of these time series we haveρi = ρ̃i for i even and
ρi = −ρ̃i for i odd. This implies that we have for the power
spectraΦ andΦ̃:

Φ(ω) = Φ̃(ω ± π). (36)

This relation, and our formulae for SH and sd, also imply
that the values of SH(ε) and sd(ε) are the same for both
time series. This same observation is also valid when using
the usual (non-smoothed) correlation integrals, even if we
use instead of the ‘maximal distance’ the Euclidean or the
lp distance.

Remark. The smoothed entropy SH(ε) should not be
confused with another notion ofε-entropy, also called
rate distortion function, introduced by Shannon and Kol-
mogorov. The way in which this rate distortion function is
related to the power spectrum is completely different, see
[2].
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